------------------------------------------------------------------------
-- The Agda standard library
--
-- Strings
------------------------------------------------------------------------

module Data.String where

open import Data.List as List using (_∷_; []; List)
open import Data.Vec as Vec using (Vec)
open import Data.Colist as Colist using (Colist)
open import Data.Char as Char using (Char)
open import Data.Bool using (Bool; true; false)
open import Function
open import Relation.Nullary
open import Relation.Nullary.Decidable
open import Relation.Binary
open import Relation.Binary.List.StrictLex as StrictLex
import Relation.Binary.On as On
open import Relation.Binary.PropositionalEquality as PropEq using (_≡_)
open import Relation.Binary.PropositionalEquality.TrustMe

------------------------------------------------------------------------
-- Types

-- Finite strings.

postulate
  String : Set

{-# BUILTIN STRING String #-}
{-# COMPILED_TYPE String String #-}

-- Possibly infinite strings.

Costring : Set
Costring = Colist Char

------------------------------------------------------------------------
-- Operations

private
 primitive
  primStringAppend   : String  String  String
  primStringToList   : String  List Char
  primStringFromList : List Char  String
  primStringEquality : String  String  Bool

infixr 5 _++_

_++_ : String  String  String
_++_ = primStringAppend

toList : String  List Char
toList = primStringToList

fromList : List Char  String
fromList = primStringFromList

toList∘fromList :  s  toList (fromList s)  s
toList∘fromList s = trustMe

fromList∘toList :  s  fromList (toList s)  s
fromList∘toList s = trustMe

toVec : (s : String)  Vec Char (List.length (toList s))
toVec s = Vec.fromList (toList s)

toCostring : String  Costring
toCostring = Colist.fromList  toList

unlines : List String  String
unlines []       = ""
unlines (x  xs) = x ++ "\n" ++ unlines xs

-- Informative equality test.

_≟_ : Decidable {A = String} _≡_
s₁  s₂ with primStringEquality s₁ s₂
... | true  = yes trustMe
... | false = no whatever
  where postulate whatever : _

-- Boolean equality test.
--
-- Why is the definition _==_ = primStringEquality not used? One
-- reason is that the present definition can sometimes improve type
-- inference, at least with the version of Agda that is current at the
-- time of writing: see unit-test below.

infix 4 _==_

_==_ : String  String  Bool
s₁ == s₂ =  s₁  s₂ 

private

  -- The following unit test does not type-check (at the time of
  -- writing) if _==_ is replaced by primStringEquality.

  data P : (String  Bool)  Set where
    p : (c : String)  P (_==_ c)

  unit-test : P (_==_ "")
  unit-test = p _

setoid : Setoid _ _
setoid = PropEq.setoid String

decSetoid : DecSetoid _ _
decSetoid = PropEq.decSetoid _≟_

-- Lexicographic ordering of strings.

strictTotalOrder : StrictTotalOrder _ _ _
strictTotalOrder =
  On.strictTotalOrder
    (StrictLex.<-strictTotalOrder Char.strictTotalOrder)
    toList