module Data.Fin.Dec where
open import Function
import Data.Bool as Bool
open import Data.Nat hiding (_<_)
open import Data.Vec hiding (_∈_)
open import Data.Vec.Equality as VecEq
using () renaming (module PropositionalEquality to PropVecEq)
open import Data.Fin
open import Data.Fin.Subset
open import Data.Fin.Subset.Props
open import Data.Product as Prod
open import Data.Empty
open import Function
import Function.Equivalence as Eq
open import Relation.Binary as B
import Relation.Binary.HeterogeneousEquality as H
open import Relation.Nullary
import Relation.Nullary.Decidable as Dec
open import Relation.Unary as U using (Pred)
infix 4 _∈?_
_∈?_ : ∀ {n} x (p : Subset n) → Dec (x ∈ p)
zero ∈? inside ∷ p = yes here
zero ∈? outside ∷ p = no λ()
suc n ∈? s ∷ p with n ∈? p
... | yes n∈p = yes (there n∈p)
... | no n∉p = no (n∉p ∘ drop-there)
private
restrictP : ∀ {p n} → (Fin (suc n) → Set p) → (Fin n → Set p)
restrictP P f = P (suc f)
restrict : ∀ {p n} {P : Fin (suc n) → Set p} →
U.Decidable P → U.Decidable (restrictP P)
restrict dec f = dec (suc f)
any? : ∀ {n} {P : Fin n → Set} →
U.Decidable P → Dec (∃ P)
any? {zero} dec = no λ { (() , _) }
any? {suc n} {P} dec with dec zero | any? (restrict dec)
... | yes p | _ = yes (_ , p)
... | _ | yes (_ , p') = yes (_ , p')
... | no ¬p | no ¬p' = no helper
where
helper : ∄ P
helper (zero , p) = ¬p p
helper (suc f , p') = ¬p' (_ , p')
nonempty? : ∀ {n} (p : Subset n) → Dec (Nonempty p)
nonempty? p = any? (λ x → x ∈? p)
private
restrict∈ : ∀ {p q n}
(P : Fin (suc n) → Set p) {Q : Fin (suc n) → Set q} →
(∀ {f} → Q f → Dec (P f)) →
(∀ {f} → restrictP Q f → Dec (restrictP P f))
restrict∈ _ dec {f} Qf = dec {suc f} Qf
decFinSubset : ∀ {p q n} {P : Fin n → Set p} {Q : Fin n → Set q} →
U.Decidable Q →
(∀ {f} → Q f → Dec (P f)) →
Dec (∀ {f} → Q f → P f)
decFinSubset {n = zero} _ _ = yes λ{}
decFinSubset {n = suc n} {P} {Q} decQ decP = helper
where
helper : Dec (∀ {f} → Q f → P f)
helper with decFinSubset (restrict decQ) (restrict∈ P decP)
helper | no ¬q⟶p = no (λ q⟶p → ¬q⟶p (λ {f} q → q⟶p {suc f} q))
helper | yes q⟶p with decQ zero
helper | yes q⟶p | yes q₀ with decP q₀
helper | yes q⟶p | yes q₀ | no ¬p₀ = no (λ q⟶p → ¬p₀ (q⟶p {zero} q₀))
helper | yes q⟶p | yes q₀ | yes p₀ = yes (λ {_} → hlpr _)
where
hlpr : ∀ f → Q f → P f
hlpr zero _ = p₀
hlpr (suc f) qf = q⟶p qf
helper | yes q⟶p | no ¬q₀ = yes (λ {_} → hlpr _)
where
hlpr : ∀ f → Q f → P f
hlpr zero q₀ = ⊥-elim (¬q₀ q₀)
hlpr (suc f) qf = q⟶p qf
all∈? : ∀ {n p} {P : Fin n → Set p} {q} →
(∀ {f} → f ∈ q → Dec (P f)) →
Dec (∀ {f} → f ∈ q → P f)
all∈? {q = q} dec = decFinSubset (λ f → f ∈? q) dec
all? : ∀ {n p} {P : Fin n → Set p} →
U.Decidable P → Dec (∀ f → P f)
all? dec with all∈? {q = ⊤} (λ {f} _ → dec f)
... | yes ∀p = yes (λ f → ∀p ∈⊤)
... | no ¬∀p = no (λ ∀p → ¬∀p (λ {f} _ → ∀p f))
decLift : ∀ {n} {P : Fin n → Set} →
U.Decidable P → U.Decidable (Lift P)
decLift dec p = all∈? (λ {x} _ → dec x)
private
restrictSP : ∀ {n} → Side → (Subset (suc n) → Set) → (Subset n → Set)
restrictSP s P p = P (s ∷ p)
restrictS : ∀ {n} {P : Subset (suc n) → Set} →
(s : Side) → U.Decidable P → U.Decidable (restrictSP s P)
restrictS s dec p = dec (s ∷ p)
anySubset? : ∀ {n} {P : Subset n → Set} →
U.Decidable P → Dec (∃ P)
anySubset? {zero} {P} dec with dec []
... | yes P[] = yes (_ , P[])
... | no ¬P[] = no helper
where
helper : ∄ P
helper ([] , P[]) = ¬P[] P[]
anySubset? {suc n} {P} dec with anySubset? (restrictS inside dec)
| anySubset? (restrictS outside dec)
... | yes (_ , Pp) | _ = yes (_ , Pp)
... | _ | yes (_ , Pp) = yes (_ , Pp)
... | no ¬Pp | no ¬Pp' = no helper
where
helper : ∄ P
helper (inside ∷ p , Pp) = ¬Pp (_ , Pp)
helper (outside ∷ p , Pp') = ¬Pp' (_ , Pp')
¬∀⟶∃¬-smallest :
∀ n {p} (P : Fin n → Set p) → U.Decidable P →
¬ (∀ i → P i) → ∃ λ i → ¬ P i × ((j : Fin′ i) → P (inject j))
¬∀⟶∃¬-smallest zero P dec ¬∀iPi = ⊥-elim (¬∀iPi (λ()))
¬∀⟶∃¬-smallest (suc n) P dec ¬∀iPi with dec zero
¬∀⟶∃¬-smallest (suc n) P dec ¬∀iPi | no ¬P0 = (zero , ¬P0 , λ ())
¬∀⟶∃¬-smallest (suc n) P dec ¬∀iPi | yes P0 =
Prod.map suc (Prod.map id extend′) $
¬∀⟶∃¬-smallest n (λ n → P (suc n)) (dec ∘ suc) (¬∀iPi ∘ extend)
where
extend : (∀ i → P (suc i)) → (∀ i → P i)
extend ∀iP[1+i] zero = P0
extend ∀iP[1+i] (suc i) = ∀iP[1+i] i
extend′ : ∀ {i : Fin n} →
((j : Fin′ i) → P (suc (inject j))) →
((j : Fin′ (suc i)) → P (inject j))
extend′ g zero = P0
extend′ g (suc j) = g j
infix 4 _⊆?_
_⊆?_ : ∀ {n} → B.Decidable (_⊆_ {n = n})
p₁ ⊆? p₂ =
Dec.map (Eq.sym NaturalPoset.orders-equivalent) $
Dec.map′ PropVecEq.to-≡ PropVecEq.from-≡ $
VecEq.DecidableEquality._≟_ Bool.decSetoid p₁ (p₁ ∩ p₂)